Identifying Structure of Nonsmooth Convex Functions by the Bundle Technique

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identifying Structure of Nonsmooth Convex Functions by the Bundle Technique

We consider the problem of minimizing nonsmooth convex functions, defined piecewise by a finite number of functions each of which is either convex quadratic or twice continuously differentiable with positive definite Hessian on the set of interest. This is a particular case of functions with primal-dual gradient structure, a notion closely related to the so-called VU space decomposition: at a g...

متن کامل

A Parallel Bundle Framework for Asynchronous Subspace Optimization of Nonsmooth Convex Functions

An algorithmic framework is presented for optimising general convex functions by non synchronised parallel processes. Each process greedily picks a suitable adaptive subset of coordinates and runs a bundle method on a corresponding restricted problem stopping whenever a descent step is encountered or predicted decrease is reduced sufficiently. No prior knowledge on the dependencies between vari...

متن کامل

Excessive Gap Technique in Nonsmooth Convex Minimization

In this paper we introduce a new primal-dual technique for convergence analysis of gradient schemes for nonsmooth convex optimization. As an example of its application, we derive a primal-dual gradient method for a special class of structured nonsmooth optimization problems, which ensures a rate of convergence of order O( 1 k ), where k is the iteration count. Another example is a gradient sche...

متن کامل

A bundle-filter method for nonsmooth convex constrained optimization

For solving nonsmooth convex constrained optimization problems, we propose an algorithm which combines the ideas of the proximal bundle methods with the filter strategy for evaluating candidate points. The resulting algorithm inherits some attractive features from both approaches. On the one hand, it allows effective control of the size of quadratic programming subproblems via the compression a...

متن کامل

A doubly stabilized bundle method for nonsmooth convex optimization

We propose a bundle method for minimizing nonsmooth convex functions that combines both the level and the proximal stabilizations. Most bundle algorithms use a cutting-plane model of the objective function to formulate a subproblem whose solution gives the next iterate. Proximal bundle methods employ the model in the objective function of the subproblem, while level methods put the model in the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Optimization

سال: 2009

ISSN: 1052-6234,1095-7189

DOI: 10.1137/080729864